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Abstract 

This project describes a novel approach to road safety analysis, using a convolutional neural 

network (CNN) to predict crash risk from static road safety factors. A software application was 

developed to generate map-like images visualising these factors around geographic points of 

interest, integrating geographic data from OpenStreetMap (OSM) and Shuttle Radar 

Topography Mission (SRTM). Road traffic accident (RTA) data was acquired from annual road 

safety reports produced by the UK Department for Transport (DfT) and used to generate images 

around collision locations. An algorithm for randomly selecting waypoints from the Great 

Britain road network was developed, with bias towards geographic areas and way types with 

higher traffic volumes. This algorithm facilitates the generation of sets of images with a 

geographic distribution representative of real-world driving patterns. A set of 84,060 images 

representing collision locations and random waypoints were generated and used to train a CNN 

to classify images as high or low-risk. The model achieved good results on standard 

performance metrics, and feature analysis on test results revealed expected correlations between 

predicted crash risk and factors such as junction count and intersection proximity. However, 

counter-intuitive results were also observed, including a negative correlation between speed 

limit and predicted crash risk. Data availability and limitations in the negative sampling 

algorithm were implicated as causal. Opportunities to improve the real-world ability of the 

model were subsequently explored in depth. The project supports future work through the 

provision of foundational software and algorithms, while exploring the potential and challenges 

in applying computer vision to road safety analysis.  
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Chapter 1 

Introduction 

1.1   Problem impact 

Road traffic accidents (RTAs) represent a significant public health issue, causing substantial 

human suffering and economic loss. The World Health Organization (WHO) reported that, as 

of 2019, RTAs were the 12th leading cause of death worldwide across all age bands, and in 2021 

alone were responsible for 1.19 million deaths (World Health Organization, 2023). The 

preventability of RTAs is emphasised by the fact that they rise to become the single leading 

cause of death worldwide among young people aged between 5 and 29 years. 

Although RTAs disproportionately affect individuals in low-income countries, even in highly-

developed countries like the United Kingdom (UK) the scale of the problem is enormous. In 

2022, the UK Department for Transport (DfT) reported that RTAs were responsible for a total 

of 1,711 fatalities and a further 28,031 serious injuries (Department for Transport, 2023), with 

the average age of those killed being just 47.7 years. 

The impact of RTAs extends beyond fatalities and injuries. The economic burden is staggering, 

encompassing lost productivity, medical costs and ambulance costs. While precise global 

figures are challenging to determine, the scale of the issue is clear. Estimates by the DfT of the 

economic cost of RTAs indicate that, excluding “human costs” and using 2012 prices, a fatal 

casualty has an average economic cost of £586,722, a serious casualty has an average economic 

cost of £36,237, and a “slight” casualty has an average economic cost of £3,397 (Department 

for Transport, 2021). Multiplying these numbers by 2022 UK RTA figures and accounting for 

the rise in inflation between 2012 and August 2024 puts the total economic cost for the UK in 

that year alone at £3.3 billion. This figure likely underestimates the true cost, as it does not 

account for unreported accidents or long-term societal impacts. 

1.2   Research background 

Road safety is a hugely complex issue involving multiple interacting factors (Wright et al., 

1976), which can be classed as either static or dynamic based on how they tend to vary with 

respect to geography. Static factors persist over a long period of time at a given location, and 

include the shape of the road network (e.g., road curvature, junctions, intersections), lane 

elements (e.g., number, width, directionality), speed limits and topography. Dynamic factors 

fluctuate over time at a given location, and include driver behaviour (e.g., speeding, distraction, 

impairment) and environmental conditions (e.g., weather, lighting). 



Using a Convolutional Neural Network to Predict Road Traffic Accident Risk from Geographic Data 

10 
 

Dynamic factors are the primary cause of RTAs (Treat et al., 1979; Dingus et al., 2016); 

however, the interplay between dynamic and static factors is complex. A 2008 report by the 

American Association of State Highway and Transportation attributed 34% of RTAs in part to 

“roadway-related factors” (2008). Furthermore, studies have consistently shown that static 

factors, even when taken in isolation, significantly affect crash risk (Nilsson, 1982; Karlaftis, 

2002; Islam et al., 2019). 

Understanding the effects of static factors on road safety in isolation from dynamic factors has 

major real-world implications for a variety of activities, including those involving long-term 

planning, such as road building. This is because it is inherently difficult to predict how dynamic 

factors will vary over time (Seaver et al., 2000; Parr et al., 2020). In addition, models built 

using dynamic factors may be harder to deploy in jurisdictions with limited data or data 

collection capacity, such as in developing countries (Mennecke et al., 2001). 

Much of the current literature relevant to the effects of static factors on road safety has 

limitations. Some studies do not leverage large datasets (e.g., Camacho-Torregrosa et al., 2013), 

while others focus on roadway characteristics without considering the wider road network (e.g., 

Chen et al., 2019). Many studies do not examine static factors in isolation (e.g., Wang et al., 

2013), or utilise discrete approximations of road junctions or networks that may not accurately 

capture real-world complexity in road geometry (e.g., Marshall et al., 2011). 

1.3   The opportunity 

The limitations in existing research into static road safety factors, and particularly the under-

utilisation of advanced machine learning techniques in the field (Silva et al., 2020), combined 

with the continued advancement of computer vision techniques (Hassaballah and Hosny, 2019), 

provides us with the novel opportunity to apply computer vision to the analysis of static road 

safety factors. Specifically, RTA data can be integrated with geographic data to create map-like 

images of collision locations that can be used as inputs to a convolutional neural network 

(CNN). Using a CNN means there is no need to drastically reduce the dimensionality of the 

input data, which requires making assumptions about feature importance; instead, the model is 

able to work directly with high-dimensional representations of the geographic features 

implicated in crash risk, with geospatial integrity preserved to a much higher degree. The 

suggested approach aligns with recent trends in deep learning where end-to-end models are 

favoured over traditional feature engineering pipelines (Mirabello and Wallner, 2018; Dzieżyc 

et al., 2020). The use of a CNN in this context could potentially uncover subtle interactions 

between geographic features that might be overlooked by conventional statistical methods or 

even human experts. 
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This opportunity is further amplified by the vast amount of geographically-labelled data 

available on RTAs in the UK, which should provide data in the volumes typically required to 

train a powerful computer vision model. 

1.4   Project objectives 

The primary aim of this project is to train a CNN for predicting crash risk. The CNN will 

function as a binary classifier, containing a sigmoid activation layer to output the probability of 

the positive class, which can be interpreted as a “crash risk index”. This approach necessitates 

the creation of both positive and negative samples for training. Positive samples will be images 

centred around collision locations, obtained from RTA data provided by the DfT; negative 

samples will be images centred around random points on the UK road network, with bias 

towards higher-traffic areas and certain way types to ensure representativeness. 

Specifically, the objectives of this project are: 

• Develop a flexible and modular software system for generating map-like images 

around specific locations: 

o Create a command-line interface for customisable image generation 

o Integrate data from various sources including OpenStreetMap (OSM) for road 

geometry and features, and Shuttle Radar Topography Mission (SRTM) for 

topographical data 

o Visually encode static road safety factors in images in a way that emphasises 

variation while preserving data integrity 

• Design and implement an efficient process for creating balanced datasets of collision 

and non-collision locations: 

o Retrieve and model DfT RTA data 

o Integrate RTA data with geographic data sources 

o Implement a conditional negative sampling algorithm using traffic data to 

facilitate the creation of sets of negative samples representative of real-world 

driving patterns 

o Optimise the image generation process for efficient production of large 

quantities of training data 

• Train and evaluate a CNN for crash risk prediction: 

o Implement a CNN architecture capable of processing map-like images 

o Train the model using a balanced dataset of collision and non-collision 

locations 

o Evaluate the model's performance using appropriate metrics (e.g., accuracy, 

precision, recall, F1 score) 
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• Analyse the model's predictions to gain insights into the relationship between static 

road safety factors and crash risk: 

o Conduct a detailed feature analysis to identify the most influential static factors 

o Examine the model's performance across different scenarios 

o Compare the CNN’s predictions with insights derived from conventional crash 

risk assessment techniques 

• Discuss the implications of the findings for road safety: 

o Explore how the model's predictions can be applied in the real world 

o Discuss the limitations of the approach 

o Suggest directions for future work 

1.5   Deliverables as evidence of fulfilling objectives 

To demonstrate the successful completion of the project objectives, the following deliverables 

will be produced: 

• A software application for generating map-like images visualising static road safety 

factors around specific locations 

• A relational database schema for RTA data storage 

• A set of scripts to facilitate local database setup and population 

• A script that uses RTA data in conjunction with geographic data to efficiently generate 

a batch of positive training data samples 

• A script that combines OSM and traffic data to efficiently generate a batch of negative 

training data samples 

• A balanced dataset of positive and negative samples 

• A script for training a CNN using these samples 

• A trained and evaluated CNN capable of outputting crash risk index given an image 

produced by the software application 

• A script for evaluating model performance on unseen data 

• A comprehensive dissertation discussing software implementation, model 

development, model performance and potential real-world applications 
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Chapter 2 

Developing the image generation software 

2.1   Introduction 

Developing a robust and performant software application for generating images is pivotal to 

the success of this project, as the images produced by the application are used as the training 

inputs for the crash risk prediction model. High-quality training data is essential for successful 

machine learning projects (Jain et al., 2020). Furthermore, the application involves the spatial 

integration of data from a variety of sources, with any misalignment likely to distort the 

apparent relationship between features to such an extent that any model would be invalidated 

before training even begins. As such, a substantial portion of the time spent on this project was 

devoted to the development of this application. 

2.2   Requirements 

To ensure the software application meets the requirements of the project, a comprehensive set 

of requirements has been defined. These range from functional requirements, such as the 

implementation of a command-line interface through which users can interact with the 

software, to non-functional requirements such as performance optimisation. 

• Command-line interface (CLI) 

o Implement a flexible CLI that accepts various arguments for customising 

image generation 

o Support arguments for location specification (latitude/longitude) 

o Allow configuration of visualisation parameters (extent, included way types, 

way colouring options) 

o Provide options for rendering additional data layers (elevation, traffic) 

• Image generation 

o Generate map-like images visualising the static road safety factors surrounding 

specific locations 

o Implement consistent scaling and alignment of generated images 

o Clearly mark the central node on the image  

o Draw ways with appropriate line widths based on way type 

o Support various colour schemes for ways (e.g., by speed limit, random, custom 

colour) 

o Render one-way ways with a distinct visual signifier (e.g., dashed lines) 
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o Render additional data layers (elevation, traffic) as background when specified 

o Allow for background smoothing through interpolation techniques 

• Feature extraction 

o Calculate and output a comprehensive set of features based on the geographic 

data being visualised, including metrics such as average speed limit, elevation 

range, intersection count, etc. 

o Ensure feature extraction is optional and can be enabled/disabled via CLI 

• Data acquisition and processing 

o Implement flexible OSM data retrieval (support both API and local database 

options) 

o Process raw OSM data to extract relevant information, including geometry, 

way type, lane characteristics and speed limits  

o Filter ways based on type (minor, medium, major) according to configuration 

o Implement flexible SRTM data retrieval (support both API and local database 

options) 

o Implement flexible traffic data retrieval (support both CSV and database 

options) 

• Data structures 

o Implement classes for geographic entities including nodes and ways 

o Implement a bounding box class for simplifying data retrieval and feature 

extraction 

o Create a data structure to hold and process gridded data (elevation, traffic) 

• Geospatial processing 

o Implement accurate conversion between different co-ordinate systems 

o Account for Earth's curvature in distance and area calculations 

o Develop algorithm to adjust nodes to the nearest point on the road network 

o Implement methods for data interpolation and smoothing 

o Utilise third-party libraries for geometric calculations (e.g., intersections) 

• Performance optimisation 

o Support local storage of OSM data for faster retrieval 

o Support local storage of SRTM data for faster retrieval 

o Support multi-threading for batch image generation 

• Error handling and logging 

o Implement comprehensive error checking and exception handling 

o Provide informative error messages for various failure scenarios 

o Implement a flexible logging system with different verbosity levels 
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o Log important events, warnings, and errors during the image generation 

process 

2.3   Technologies 

Python was the programming language used to develop this software application. Python is a 

robust and readable language that offers a rich ecosystem of libraries, both built-in and third-

party, that are applicable to the specific challenges faced in this project (McClain, 2022). The 

built-in argparse library supported the creation of an easy-to-use and well-documented 

command-line interface. Built-in language features and NumPy handled low-level 

implementation details such as in-memory data structures and trigonometric operations. 

Matplotlib and Pillow provided visualisation capabilities, which are essential for image 

generation. Geospatial processing was assisted by Geographic Information System (GIS) 

libraries including Cartopy and Shapely, which offer highly specific tools for things like co-

ordinate projection and identifying intersection points between geometric shapes. SciPy was 

used for interpolation, which is required for both background smoothing and traffic data 

processing. API calls were handled by the requests library, while local storage and modelling 

of data was handled by psycopg2 and SQLAlchemy. Beyond image generation, seamless 

integration with the model training and testing phase will be possible thanks to Python’s support 

for popular and powerful machine learning frameworks such as TensorFlow. 

2.4   Implementation 

2.4.1   How it works 

N.B., in the below section, custom classes specific to this software application are formatted 

like this: CustomClass 

The process begins with the creation of a Node object, representing a geographic point, from a 

latitude and longitude provided by the user. The Node serves as the focal point of our 

visualisation, anchoring all subsequent data gathering and rendering processes. 

The geographic area of interest is defined by creating a rectangle, or BoundingBox, centred 

around the Node. A BoundingBox is effectively a container for a set of four pairs of co-

ordinates, representing the four cardinal directions: north, east, south and west. A configurable 

extent parameter determines how far in metres in each of these directions the BoundingBox 

extends from the Node. To convert metres to degrees, a constant approximation of 111,320 

metres per degree of latitude is used (Lundbäck et al., 2020). Given this approximation, 

latitudinal bounds are trivial to calculate. Calculation of longitudinal bounds, however, requires 

careful consideration of the spherical nature of the Earth: as the distance from the equator 
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increases, the distance represented by one degree of longitude decreases. This is handled by 

scaling the longitudinal extent by the cosine of the latitude, ensuring that the BoundingBox 

always represents a constant area, regardless of latitude. 

Next, OSM data is fetched for the BoundingBox, with a buffer of 50 m applied in each 

direction to offer a stronger guarantee of no missing ways in the final visualisation. OSM is the 

richest data source used by our software application, providing not only way types and 

geometries, but also speed limits and lane characteristics. Two retrieval methods are available 

for OSM data, selectable via an environment variable. The default method is the Overpass API, 

which is slow but provides up-to-date data, with no geographic constraints or local storage 

requirements. The alternative involves setting up, populating and accessing a local database, 

providing fast, offline access that is particularly useful when generating training data in large 

quantities. Detailed setup instructions can be found in the code repository’s README file. 

Both retrieval methods share a common interface: the OSMClient class. Abstracted 

functionality includes the parsing of speed limit data to handle inconsistencies. Ultimately, way 

data is processed into a list of Way objects. 

The WayCollection class is used to organise, optimise and analyse OSM data. Before binding 

the list of Ways to itself, the WayCollection will process each Way into one or more new 

Ways, depending on the intersection between the Way and the BoundingBox. This process 

removes any Way segments that are not visible in the figure, ensuring that features such as 

junction count and total way length can be correctly extracted. 

 

Figure 1: Visual representation of the effect of visible way processing by the WayCollection class, with 

the “before” state on the left, and the “after” state on the right. The grey inner boxes represent the 

geographic area shown in the final figure; the white outer boxes represent the buffered geographic area 

for which OSM data was fetched. The red way gives rise to the green way upon intersection with the 
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boundary of the inner box; the blue way gives rise to the yellow and purple ways. Discarded segments 

are shown as grey, dashed lines. 

The WayCollection also merges collinear Ways, with a collinearity tolerance of 30°, in cases 

where way types are the same and the Ways do not have speed limits that differ. This is primarily 

done to more accurately distinguish junctions from intersections during feature extraction, as 

the splitting of real-world ways at intersection points is a common feature of OSM data. 

The Node is then optionally translocated to the nearest point on the nearest Way in the 

WayCollection. This functionality was introduced to compensate for minor geographic 

discrepancies between data sources, and acts as a form of data cleaning, placing Nodes directly 

on Ways. The Way to which the Node is translocated is also a valuable source of features, 

including number of lanes, speed limit and way type. After translocation, a new BoundingBox 

is created around the translocated Node and OSM data is re-fetched to ensure all Ways are 

accounted for in the newly-defined geographic area. 

Next, depending on the configuration parameters used, either elevation or traffic data is fetched 

for the geographic area of interest, to be used to colourise the figure background. This data 

acquisition process is handled by a hierarchy of abstract and concrete descendants of the base 

GridClient class, with both an API and local database access available as retrieval methods, 

selectable via an environment variable. Regardless of the data type or acquisition method, the 

BoundingBox is buffered by 100 m in each direction before being used in the search query. 

Elevation data comes courtesy of SRTM and is naturally gridded, which is to say it is provided 

as a regular grid of data points, whereby each point represents the elevation at a specific 

location. Traffic data meanwhile is not naturally gridded, and has to be adapted into a grid 

through aggregation and interpolation; the exact process through which this is achieved will be 

discussed in the subsection “Generating negative samples” of the section “Generating training 

data”. 

For SRTM data, the OpenTopography API is used to retrieve data from the GL1 dataset, the 

highest resolution dataset available from SRTM. The 1 represents the resolution in arc-seconds 

– equivalent to 30 m at the equator. At a latitude of 55°, which can be considered roughly 

representative of Great Britain, the east-west resolution increases to approximately 17.74 m. As 

with OSM data, the trade-offs between the API and local database access primarily relate to 

currency, speed and storage. Detailed setup instructions for the local SRTM database can be 

found in the code repository’s README file. After fetching, the grid data undergoes optional 

interpolation and smoothing to enhance visual quality. This process involves upsampling the 

data using linear interpolation to increase resolution, followed by Gaussian filtering for a 

smoother appearance. Grid data is returned from GridClient encapsulated within a 
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BackgroundGrid object, which like WayCollection is an intelligent data structure capable 

of both organising and analysing its own data. 

The FigureGenerator class handles the actual visualisation, using Matplotlib and Cartopy. 

The figure’s axes are initialised with a transverse Mercator map projection, chosen for its ability 

to accurately represent the geometry of shapes at a small scale, far from the equator. The 

BackgroundGrid object is rendered first, using a dark green to light green colour scale to 

highlight differences in elevation or traffic volume without interfering with the colour scheme 

used for Ways. The centre of the value range mapped to the colour scale depends on the data, 

eliminating the significance of global absolute values and helping to produce images that will 

allow the CNN to focus on local changes. Further, for elevation data the difference between the 

minimum and maximum values in the value range mapped to the colour scale is fixed relative 

to the plot extent, which is to say that for a fixed plot extent and within correspondingly fixed 

elevation bounds, the same visual difference in colour will always correspond to the same 

absolute change in elevation. This is achieved by dividing the plot extent by a fixed constant 

“grid colour range factor” to get a value X, finding the centre value Y in the grid and subtracting 

or adding X from or to Y to obtain the minimum and maximum values in the range, respectively. 

For example, with a plot extent of 100 m and a grid colour range factor of 10, the resulting 

value range would be ±10 m relative to the centre value. If no background grid rendering option 

is supplied by the user, a simple light grey background is used for the figure. 

Next, the WayCollection is plotted. Each Way is represented as a line, with its appearance 

customised to convey additional information. Line width is used to indicate way type, with 

major ways such as motorways appearing thicker. Way colourisation is customisable, with the 

options including using a single specified colour for all Ways, randomly generating colours, or 

colouring Ways based on their speed limits. In the latter case, a custom blue-red colour map is 

employed, with blue used for low speed limits and red for high. One-way Ways are distinguished 

through line dashing, with the dash pattern adjusted based on the line width to optimise 

visibility. 

The final thing that FigureGenerator does is mark the Node as a circle at the centre of the 

figure. The figure is then saved as a PNG file. 

2.4.2   Configuration options 

The visualisation process can be configured through command-line arguments: 

• extent – defines the extent of the visualisation in metres in each cardinal direction, 

from the node 

• include-ways – limits which way types are included. Available options include: 
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o MAJOR – only major ways (e.g., motorway) 

o MEDIUM – major and medium ways (e.g., secondary) 

o MINOR – all ways (major, medium and minor e.g., footway) 

• way-colour – specifies how ways should be colourised. Available options include: 

o NONE – apply no colour 

o RANDOM – apply random colours (useful for distinguishing between separate, 

collinear ways) 

o OSM_SPEED_LIMITS – colour ways according to OSM speed limits, where 

available 

o Any hex colour value 

• render-elevation – colours the image background based on SRTM elevation data 

• render-traffic – colours the image background based on traffic volume data 

• background-smoothing – smooths the background render through grid 

interpolation. Only applicable when either render-elevation or render-

traffic is set 

• raw-traffic – specifies that raw traffic data should be used instead of interpolated 

traffic data. Only applicable when render-traffic is set 

• lat – defines the latitude of the node 

• lon – defines the longitude of the node 

• adjust-node – translocates node to nearest point on nearest way 

• generate-features – extracts geographic features and saves to JSON file 

2.4.3   Guided example 

To provide a concrete illustration of the software application’s functionality, let’s examine the 

output generated by a specific command. 
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Figure 2: Map-like image generated by the software application using the command “python -m 

scripts.main –-lat 50.25488 –-lon -5.05630 --extent 100 --render-elevation --background-smoothing --

way-colour OSM_SPEED_LIMITS”. 

The grey circle in the centre represents a node at the co-ordinates specified in the command. 

The mapped area is 200 m x 200 m, with the size defined by the extent parameter: the top edge 

of the image is aligned with the latitude 100 m north of the central node; the right edge is aligned 

with the longitude 100 m east of the central node; and so forth. The lines represent ways fetched 

using an OSM client. Thicker lines represent larger way types; dashed lines represent one-way 

ways. Line colour denotes speed limit: a blue-red colour gradient is used, from low to high 

speed limits. Black is used where no speed limit data is available. The darker green areas in the 

image background represent areas of lower elevation, while the lighter green areas represent 

areas of higher elevation. 

2.4.4   Further examples 

A variety of scenarios and outputs are documented below, to demonstrate the software. 

     

Figure 3:  Example outputs, showing how the software is able to visualise static road safety factors in 

the area immediately surrounding a given location. From left to right, the co-ordinates used are as 

follows: 53.65774, -2.63200; 51.07897, -1.45825; 51.52590, -2.60595. 

The software is capable of rendering both small and large areas centred around custom co-

ordinates, with precise integration of elevation data at any scale. 
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Figure 4: Examples of outputs that demonstrate the flexibility of the software. From left to right, the 

commands used are as follows: “python -m scripts.main --lat 56.7969 --lon -5.0036 --extent 10000 --

render-elevation --include-ways MEDIUM”; “python -m scripts.main --lat 55.9486 --lon -3.1999 --extent 

150 --render-elevation --background-smoothing”; “python -m scripts.main --lat 51.1279 --lon 1.3134 --

extent 2000 --render-elevation --background-smoothing”. The image on the left shows the area around 

Ben Nevis; the image in the centre shows the area around Edinburgh Castle; and the image on the right 

shows the area around the White Cliffs of Dover. 

The high degree of configurability, including variable way colourisation and way type 

inclusion, allows the software to be used to generate meaningful images in a variety of scenarios 

and at a variety of scales. 

      

Figure 5: Further example outputs, demonstrating various configuration options. From left to right, the 

commands used are as follows: “python -m scripts.main --lat 53.9599 --lon -1.0873 --extent 500 --way-

colour RANDOM”; “python -m scripts.main --adjust-node --lat 52.5095 --lon -1.8669 --extent 750 --way-

colour OSM_SPEED_LIMITS --include-ways MAJOR”; “python -m scripts.main --lat 51.5115 --lon -0.128 

--extent 25 --way-colour #AAAA00”. The image on the left shows the centre of York; the image in the 

centre shows Spaghetti Junction in Birmingham; and the image on the right shows a small 50 m x 50 m 

area in the centre of Manchester.  
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Chapter 3 

Generating training data 

3.1   Introduction 

We want our model to learn how the spatial relationships between various static road safety 

factors surrounding a specified location influence the likelihood of a collision occurring at that 

location. The problem can be framed as a binary classification task, distinguishing between 

locations where collisions are likely to occur and those where they are not. To train a binary 

classifier, labelled sets of positive and negative samples are required. 

3.2   Generating positive samples 

Positive samples in the context of binary classification are data samples that belong to the class 

of interest. In the case of our project, a positive sample is a map-like image visualising the static 

road safety factors around a known collision location. The image generation software 

application defined in the preceding section is able to take a latitude and longitude and generate 

such a visualisation. Therefore, given co-ordinate-labelled collision data, it is possible to use 

the software to generate positive samples. 

Collision data was taken from annual RTA reports produced by the DfT. These reports are 

comprehensive and high-quality sources of information, with data going back as far as 1979 

(Department for Transport, 2024). In the latest dataset (covering the year 2022) alone, 105,957 

collisions were recorded, each with a precise latitude and longitude, along with rich 

supplementary data, both numerical (e.g., number of vehicles) and categorical (e.g., local 

authority, road type, light conditions). The richness of the UK’s RTA data, along with the 

country’s high availability of OSM and traffic data, make it an outstanding option for this 

analysis. 

DfT RTA data was downloaded alongside an RTA data guide, which is an Excel file containing 

a single table with the fields “table”, “field name”, “code/format” and “label”. This table defines 

schemata for a set of three tables “Accident”, “Vehicle” and “Casualty”, which are the primary 

entities in DfT RTA data. The table also provides mappings of IDs to labels for the data 

categories present in the DfT RTA data itself. These mappings are essential for correctly 

interpreting DfT RTA data, where categorical data points are supplied as IDs rather than labels. 

Acquisition and relational modelling of DfT RTA data were facilitated by a set of custom 

Python modules. An SQLAlchemy model was defined for each data category present in the DfT 
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RTA data guide. Reference data from the DfT RTA data guide was loaded into these models and 

persisted to a MySQL database. Once reference data had been loaded into the database, the 

same process was applied for accident (collision), vehicle and casualty data. A comprehensive 

set of foreign key constraints were used to ensure data integrity. Collisions missing either a 

latitude or a longitude were discarded. 

Initial data quality analysis revealed that for the 2022 DfT RTA dataset, only 22 of the 106,004 

raw collision records (0.02%) were missing latitude or longitude. No duplicate rows were 

found. A naïve, automated comparison with the reference data in the DfT RTA data guide 

demonstrated that the majority of values map correctly to valid data categories with minimal 

parsing. 

With RTA data modelled and loaded into a relational database, the image generation software 

was extended through a new module specific to positive sample generation, that adds the 

command line option collision-id for specifying a collision whose latitude and longitude 

is used as the centre point for the visualisation. In case no collision ID is passed, a random 

collision is retrieved from the database. A separate script for batch sample generation was also 

created, sharing functionality with the single sample script but adding concurrency and progress 

logging. 

The batch positive sample generation script was run to generate positive samples. The extent 

parameter was set to 50 m, on the basis that any geographic feature further than 50 m from the 

node was considered significantly less likely to affect crash risk, and would likely serve only 

as unhelpful noise. Interpolated elevation data was used to colourise image backgrounds. All 

way types were included to accurately represent the complexity of road networks at a small 

scale, and reduce the chance of a collision location being adjusted to an incorrect way. Ways 

were colourised according to OSM speed limit data where available. A total of 83,877 positive 

samples were generated in 4 hours and 8 minutes; 42,030 of these samples were designated for 

training, and 41,847 were designated for testing. The rough 50/50 split was used to limit model 

training time and provide an extensive testing resource. 

3.3   Generating negative samples 

Negative samples in the context of binary classification are data samples that do not belong to 

the class of interest. In the context of this project, negative samples are locations where 

collisions have not occurred. By randomly selecting waypoints from the road network in Great 

Britain, with selection probability weighted by traffic volume and way type, a distribution of 

negative samples that accurately reflects real-world driving patterns can be created. The 

underlying principle here is that an essential prerequisite for a collision occurring at a given 
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waypoint is a vehicle passing through that waypoint, which we will call a “vehicle passage”. 

As such, with all other things being equal, collisions are more likely to occur on ways with 

higher vehicle throughput. In theory, given an infinitely long period of time, dividing the 

number of collisions into the total number of vehicle passages at a given location should result 

in a value indicative of the crash risk at that location. 

Recording vehicle passage data at all waypoints on the UK network is practically impossible 

given current technologies. However, the DfT does provide a dataset of 4,960,860 raw traffic 

counts recorded over 24 years (from 2000 to 2023) at 60,075 unique locations. This data can 

be aggregated by location to get average traffic counts. 

 

Figure 6: Average traffic counts in Great Britain. Counts are represented as circles of fixed size, with a 

yellower hue indicating a higher value. 

While this average traffic count dataset provides valuable information, further transformation 

is required before the data can be used within a negative sampling algorithm. The fundamental 

problem is that traffic counts are recorded at specific geographic points, which are discrete, 

dimensionless entities in space which offer no direct information about traffic volume at any 

other point along the continuous road network. This problem is compounded by the sparse 
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distribution of traffic counts across suburban and rural areas, as well as the fact that traffic 

volume can vary significantly over short distances (Thomas et al., 2008). 

To ensure that any given way in Great Britain is associated with traffic volume data, an 

interpolated grid is used. Raw, point-based data is transformed into a continuous surface of 

polygons or cells, allowing for assignment of traffic volumes to ways based on their geometric 

intersection with traffic volume-labelled cells. A regular grid covering the geographic extent of 

Great Britain is first constructed, where each cell represents an area of 250 m x 250 m. This 

area size was chosen to balance granularity, which is naturally limited anyway by the sparseness 

of the raw data, with computational efficiency. Traffic volumes are assigned to each grid cell 

by taking the average of the average traffic counts recorded within the geographic bounds of 

the cell.  For the vast majority of grid cells which completely lack traffic data, an interpolation 

technique known as Inverse Distance Weighting (IDW) is applied. IDW is a deterministic 

method for multivariate interpolation that estimates values for unknown points based on the 

values of known points, with the influence of known points diminishing as distance increases 

(Amini et al., 2019). Parallel processing is used to optimise the performance of the 

computationally expensive interpolation process. 

         

Figure 7: Interpolated traffic data. On the left, the full extent of the grid is colourised, including marine 

areas, where colourisation appears heavily distorted thanks to the lack of data to guide interpolation. 

The overall distortion in the shape of the grid is a result of the OSGB projection used in visualisation. On 

the right, a UK GeoJSON shapefile was used to “mask” the grid data, providing a more intuitive 
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representation of traffic volume across Great Britain. No traffic data counts are recorded for Northern 

Ireland; its colourisation here is simply a byproduct of the UK shapefile filtering and the fact that the 

grid is a simple rectangle based on the minimum and maximum latitude and longitude values of Great 

Britain. 

The negative sampling process relies on integration of OSM and traffic data. OSM data for 

Great Britain can be downloaded from a website like GeoFabrik and imported into a PostGIS 

database using the command line tool osm2pgsql, with a custom “style” file allowing import to 

be limited to relevant data, which saves time and storage space. PostGIS natively supports 

complex geometric operations, which will facilitate the spatial joining of OSM to traffic data 

based on intersection between the line geometries of ways and the polygon geometries of traffic 

grid cells. To support this, the Python script used to add traffic grid data to the PostGIS database 

also creates and indexes a geometry column on the table, populating this column with polygon 

data calculated from the latitude and longitude bounds of the corresponding cells. 

The negative sampling algorithm is multi-stage. Firstly, a sample of % of the available OSM 

ways are taken, using the Bernoulli sampling method for truly random row-level sampling. 

Secondly, sampled ways are spatially joined to traffic grid cells. In the case of a way intersecting 

multiple traffic grid cells, traffic volume is averaged across those cells. Thirdly, sampled ways 

are filtered based on a combination of way length, traffic volume and way type. We will discuss 

this filtering behaviour in more detail in the paragraphs below. Fourthly and finally, a random 

point is selected on each filtered way. This is done by generating a random point within the 

bounding box of the way and then projecting it onto the way. 

The way length filter component is important because it ensures that when selecting random 

points on selected ways in the final query, the probability of selecting any given point on the 

road network as a whole is uniform; without this filter, shorter ways would be overrepresented. 

The way type filter component allows us to bias way selection according to way type, which is 

important because of the low fidelity of traffic data, with sparse traffic counts and relatively 

large grid cells that each incorporate numerous ways of different types. This helps to mitigate 

localised variation in traffic volumes. 

Way type weights can be based either on traffic volume or collision frequency, depending on 

the characteristics desired in the negative sample set. Biasing way selection towards ways based 

on traffic volume is more naturalistic and potentially representative of real-world driving 

patterns; biasing way selection towards ways based on collision frequency may produce a 

negative sample set that more closely matches the positive sample set, helping a model learn to 

discriminate based on highly localised geometric features. Regardless of methodology, tools 
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from our image generation software application, specifically the OSM client and the node 

adjustment algorithm, are leveraged in the generation of way type weights. 

Two Python scripts were created to leverage this algorithm – a script for generating a single 

negative sample, in which a single filtered way is randomly selected, and a script for generating 

multiple negative samples, which leverages parallel processing and batch retrieval of filtered 

ways for performance optimisation purposes. The batch negative sample generation script was 

run to generate negative samples. The same configuration parameters that were used for 

positive sample generation were re-used for negative sample generation, which is crucial to 

ensure that any differences between positive and negative samples are genuine and not merely 

artefacts of the generation process. Way type weights for biasing negative sampling were 

calculated based on traffic volume. A total of 84,960 negative samples were generated in 4 

hours and 34 minutes; 42,478 of these samples were designated for training, and 42,482 were 

designated for testing. 
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Chapter 4 

Training the convolutional neural network 

4.1   Introduction 

Having described the process through which training data was generated for a binary 

classification CNN in detail, we now turn our attention to the training itself. The training 

process exists to allow the CNN to learn how the presence of and interactions between a variety 

of static road safety factors influences crash risk. Our end goal is not to produce a model capable 

of outputting the real-world probability of a collision occurring at a particular location; a 

numerical index value that can be used as a point of comparison suffices. Given the fact that 

RTAs are exceedingly rare events in the real world, with the UK DfT estimating that there were 

only approximately five fatalities per billion vehicle miles travelled in 2022 (Department for 

Transport, 2023), training the model as a direct probability estimator would be particularly 

challenging due to the difficulty of representing the real-world distribution in the training data, 

as well as the inevitable class imbalance concerns that would arise (Niaz et al., 2022). 

4.2   Data preparation 

As our training data is generated by custom software specially designed for the task, image 

preprocessing in the context of the model training phase is not necessary. The software ensures 

images are created with consistent dimensions, colour schemes and feature representations. 

Images are sized at 250 pixels square to balance fidelity with memory and storage 

considerations. Data augmentation is limited to horizontal and vertical flipping, which 

introduces variation on a per-epoch basis without compromising geospatial integrity. These 

transformations may enhance the model’s generalisability to right-hand traffic systems, which 

are prevalent in the majority of countries worldwide. 

A balanced dataset with an equal number of samples of each class gives the model exposure to 

a number of positive instances large enough to facilitate the learning of features characteristic 

of collisions, while also providing a contrastive sample set for class separability. This is 

beneficial for model generalisation (Dharmasaputro et al., 2022) and feature importance 

understanding (Zaza et al., 2023). The balance will mean that the penalty for misclassification 

of either class is equivalent, which prevents bias towards the majority class (Dablain et al., 

2022). 

An 80:20 validation split gives us a sufficient volume of training data for model learning and 

feature extraction, while reserving enough validation data for robust performance evaluation. 
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This ratio is considered standard for balanced model training and validation in machine learning 

tasks. 

4.3   Model architecture 

The model architecture used is primarily comprised of a series of convolutional layers, which 

are the fundamental distinguishing feature of CNNs. Convolutional layers enable hierarchical 

feature learning, from low-level patterns through to high-level concepts (Qi et al., 2017). A 

non-linear activation function is applied to the output of each convolutional layer, creating 

decision boundaries of arbitrary complexity that enable the network to learn complex patterns 

(Sharma et al., 2017). ReLU is chosen as the activation function for its computational efficiency 

and effectiveness in mitigating the vanishing gradient problem in deep networks (Alkhouly and 

Hefny, 2021). Max pooling layers are interspersed throughout the network, reducing spatial 

dimensions to mitigate overfitting and promote translation invariance (Mouton et al., 2020), 

which allows the network to recognise features regardless of their exact position in the image. 

The architecture culminates in a series of three dense (fully-connected) layers, with the final 

layer utilising a sigmoid activation function to produce a single output value between 0 and 1, 

representing the probability of the input belonging to the positive class. 

Mixed precision training is employed to optimise performance and memory usage. This 

technique utilises both 16-bit and 32-bit floating-point representations of model parameters, 

activation values, backpropagation gradients and intermediate computations during training, 

accelerating the process while maintaining model accuracy (Micikevicius et al., 2017). 

The decision was taken not to use a pre-trained model because of two main factors. Firstly, pre-

trained CNNs are typically trained for object recognition from photographs, while our training 

data samples are synthetic, map-like images that exhibit fundamentally different visual 

characteristics. This disparity could lead to negative transfer, where features learned by the pre-

trained model are not applicable and may even have an adverse effect on learning (Wang et al., 

2019). Secondly, training data is not scarce in our case, as we have access to extensive RTA 

data for generating positive samples and a theoretically infinite pool of negative samples. 

4.4   Hyperparameters 

The training process is configured with a batch size of 16, a maximum of 25 epochs, and an 

early stopping “patience” value of 5. The relatively small batch size is chosen due to GPU 

memory constraints, which are a common limitation when working with CNNs, while the epoch 

limit was chosen based on preliminary experiments indicating that convergence typically occurs 

around this point. Early stopping is implemented to prevent overfitting (Ying, 2019), halting 

training when validation loss ceases to reduce for five consecutive epochs. Model 
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checkpointing ensures that the best-performing model iteration is saved, based on validation 

loss. 

The Adam optimiser is utilised for its adaptive learning rate capabilities, which can lead to 

faster convergence and better performance across a wide range of deep learning tasks (Zhang, 

2018). Binary cross-entropy serves as the loss function, appropriate for this binary classification 

problem and aligning with the sigmoid activation in the output layer (Ruby and Yendapalli, 

2020). 

4.5   Training execution 

The model was trained on 84,060 images equally divided between the positive and negative 

classes. Training was performed on a Dell XPS 15 laptop with an NVIDIA GeForce RTX 3050 

Ti Laptop GPU, and took 4 hours, 1 minute and 30 seconds. 

 

Figure 8: Training and validation metrics for the CNN model over 21 epochs. 

The training accuracy rapidly increases and stabilises around the fifth epoch, closely followed 

by the validation accuracy, indicating strong model generalisation without overfitting. Training 

and validation F1 scores show a similar pattern. Given the equal number of positive and 

negative samples in the training dataset, it is unsurprising to see close correlation between 

accuracy and F1 score. Overall, the model converged effectively, with minimal overfitting. 
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Chapter 5 

Analysing the model 

5.1   Introduction 

The real-world capability of the CNN developed in this project cannot be fully captured by 

traditional performance metrics alone, as these metrics are not only dependent on the accurate 

representation of features in the generated images but also critically on the contrast between the 

geographic distributions of positive and negative samples. The geographic distribution of 

negative samples is shaped by the assumptions made during the negative sampling process; 

therefore, the model's performance reflects the validity of these assumptions. Poor assumptions 

during negative sampling could, paradoxically, result in stronger performance metrics, thereby 

making these metrics less reliable indicators of the model’s true effectiveness. 

An alternative way to measure the abilities of the model is to extract categorical and numerical 

features from training samples, analyse how these features in isolation affect the model’s 

predictions, and then frame findings in the context of existing research into the effects of those 

same features on crash risk. The idea will be to determine whether the model is fundamentally 

sound in its understanding of key static road safety factors. 

5.2   Model performance overview 

With the above caveats in mind, the model was tested against 84,329 unseen test samples, 

comprising 41,847 positive samples and 42,482 negative samples. 

 

Figure 9: Performance metrics: accuracy: 84.8%; precision: 79.95%; recall: 92.57%; F1 score: 85.8%. 

5.3   Feature analysis 

A variety of static road safety factors were selected as features, based on their documented 

importance in crash risk as well as the technical complexity in their extraction. These features 

are as follows: 
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• Average speed limit: the average speed limit in miles per hour (mph) across all ways 

in the image. Ways without speed limit are ignored 

• Elevation range: the difference in metres between the highest and lowest elevation 

points in the image 

• Presence of roundabout: whether a roundabout is present within the image 

• Intersection count: the number of intersections within the image. An intersection is a 

point at which two ways cross 

• Intersection proximity: the distance in metres between the central node and the 

nearest intersection, if one exists in the image 

• Junction count: the number of junctions in the image. A junction is a point at which 

two ways touch but do not cross 

• Junction proximity: the distance in metres from the central node to the nearest 

junction, if one exists in the image 

• Node way curvature: the curvature of the way on which the central node is located, 

calculated as the ratio of the length of the way to the straight-line distance between its 

start and end nodes. This means that a straight line would have a curvature of 1.0, with 

higher values indicating more curvature 

• Node way lanes: the number of lanes on the way where the central node is located 

• Node way one-way: indicates whether the way at the central node is one-way 

• Node way speed limit: the speed limit in mph of the way on which the central node is 

located 

• Node way type: describes the type of way at the central node (e.g., "motorway") 

• Way count: the total number of ways in the image 

• Way length: the total length in metres of all ways in the image; approximates “density” 

Feature extraction is built in to the image generation software, with the main data structures 

offering interface methods that expose these features while abstracting away the 

implementation detail. Generated features are saved as metadata JSON files during batch 

sample generation. During model testing, these metadata files were associated with their true 

labels and predicted crash risk indices to create a table for feature analysis. 
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Figure 10: Spearman’s rank feature correlation matrix showing the correlation between evaluated 

features, the indicator “Positive” (a binary value representing whether the sample is positive or negative) 

and the crash risk index. Spearman’s rank was used owing to its ability to handle outliers (present in e.g., 

intersection count) or features with nearly uniform distributions (e.g. node way curvature). 

The correlation feature matrix reveals that junction count, way count and way length are the 

three features that have the strongest positive correlation with crash risk index, providing an 

immediate indication that the model is learning to identify positive samples through the 

presence of denser, more interconnected networks of ways. This tracks with reality because 

such configurations are more challenging to navigate, with greater interaction between vehicles 

and an increased likelihood of collisions at conflict points (Wu et al., 2019). Strong negative 

correlations between crash risk index and each of the two speed limit factors – average speed 

limit and node way speed limit – are counter-intuitive, owing to the documented increased risk 

of collisions at higher speeds (Aarts and Van Schagen, 2006), making this a candidate for deeper 

investigation. Meanwhile, the moderate negative correlation between junction proximity and 

crash risk index, as well as intersection proximity and crash risk index, indicates that crash risk 

index decreases as proximity increases, which is to say that the further we get from a junction 

or intersection, the lower the predicted crash risk. This again tracks with reality because of the 

increased decision-making demands on drivers given reduced proximity to junctions and 

intersections, and the potential for sudden braking. It may also be a function of the fact that 

junctions and intersections are natural conflict points: geographic imprecision in DfT RTA data 

may scatter collisions occurring at these points around these points in our training data, meaning 
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that the further we move from a junction or intersection, the less likely it is that a collision will 

be recorded as occurring nearby, thus reducing the predicted crash risk. Features such as 

elevation range, node way curvature and node way one-way do not appear to factor significantly 

into the model’s predictions. 

The intuitive covariance between features related to way density, including way length, way 

count, junction count, junction proximity, intersection count and intersection proximity, is 

clearly apparent from the feature correlation matrix. To isolate the underlying effects of these 

features, multiple regression analysis was performed using Ordinary Least Squares (OLS) 

regression, with Multiple Imputation by Chained Equations (MICE) used to handle missing 

data values. 

  

  

Figure 11: Residual plots created using a two-step 

regression process. First, both the crash risk index and 

each feature were regressed against all other features. 

Then, the residuals from these regressions were plotted 

against each other. This approach isolates the unique 

relationship between each feature and the crash risk 

index, controlling for the influence of other features. The 

resulting plots show the strength and direction of these 

isolated relationships. 
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Analysing the effect of each feature in isolation reveals some interesting insights, with 

statistically significant relationships found between each of the features and crash risk index. 

Total way length has only a marginal effect on predicted crash risk (coefficient: 0.000313), 

indicating that our model is not simply predicting higher risk based on the total amount of road 

present, but rather considering more complex interactions between features. The feature that 

correlates most strongly with crash risk index is junction count, with a meaningful effect size 

(coefficient: 0.010956) that underscores the salience of connection points between ways in 

model learning. Moreover, the negative correlation observed between crash risk index and both 

junction proximity (coefficient: -0.004946) and intersection proximity (coefficient: -0.004319) 

is retained even after controlling for the effects of covariant features. The importance of 

intersection proximity in particular will be spoken about in the next subsection, “Prediction and 

error analysis”. 

The negative correlation between speed limits and crash risk index indicates that the model 

appears to have learnt to associate higher speed limits with lower crash risk, which is not 

immediately consistent with intuition or research findings. While it is true that higher-speed 

ways such as motorways are relatively safe (Hovenden et al., 2020), by artificially manipulating 

the speed limit feature in a sample image to observe the effect on model prediction (feature 

sensitivity analysis), we can observe that the model’s bias in relation to speed limit does not 

appear to be legitimate. 

   

Figure 12: On the left, an image generated using our positive sample generator, with ways colourised 

according to OSM speed limit data. On the right, the same image but artificially manipulated to colourise 

all ways as red, the colour used to indicate a speed limit of 70 mph in the training data. The model 

predicted a crash risk index of 0.9453 for the image on the left, and 0.6064 for the image on the right. 

The bias is likely an unwanted artefact of deficiencies in the negative sample generation 

algorithm, although due to the nature of the problem that that algorithm exists to resolve, it is 
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inherently difficult to confirm how far real-world traffic flow across the network is being 

misrepresented. We can however see in the testing data that lower speed limits are much more 

common in the node ways of positive samples than negative samples. 

 

Figure 13: Number of negative and positive samples by node way speed limit in the testing data. 

Exacerbating the problem with speed limits, there is an inescapable correlation in the sample 

data between higher speed limits and smaller values for way length, junction count and 

intersection count, and higher values for junction and intersection proximity, all feature 

directions which have been shown to independently exert a negative effect on crash risk index. 

 

Figure 14: Correlation between speed limits and features associated with way density in testing data. 

Put simply, there are literally no real-world examples available of high speed limits in dense, 

residential areas, due to centralised regulation of road infrastructure based on the implied crash 

risk of such configurations, and this means that our model is not given the data it needs to learn 

that such configurations are dangerous. Human intervention here has led to a form of 

survivorship bias, a common problem in data science (Slaper et al., 2019; Pasqualetti et al., 

2023). The final thing to note in relation to speed limits is that collision severity is not visually 

encoded in sample images and is therefore not accounted for by our model. The ambivalence 

Node way 

speed limit 

(mph)

Average way 

length

Average 

junction 

count

Average 

junction 

proximity

Average 

intersection 

count

Average 

intersection 

proximity

10 488.18 7.46 17.15 2.03 22.39

20 422.47 6.62 14.44 2.05 19.04

30 404.39 6.06 14.87 1.61 21.07

40 401.17 4.74 17.95 1.39 23.04

50 353.94 2.58 23.05 0.95 24.15

60 213.11 1.58 19.28 0.22 21.64

70 336.50 0.77 31.97 0.48 29.14
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to collision severity is not an oversight but a defining characteristic of the model, which 

functions only as a predictor of the risk of any collision occurring; however, incorporating 

collision severity as a feature might help to produce a more usable model. Refinement of the 

negative sampling algorithm to more accurately calculate traffic flow may also help to mitigate 

or eliminate counter-intuitive effects. 

5.4   Prediction analysis 

Although the residual analysis in the preceding section did not show intersections to be any 

more important as a predictor than way length or junctions, it is clear from examining the test 

samples with the highest crash risk indices that they are an influential factor on model learning. 

95.9% (71 / 74) of samples with a crash risk index of >=0.999 have at least one intersection, 

compared to 33.7% (28,415 / 84,329) in the general population, while the average intersection 

proximity of those 71 high-risk samples with intersections is only 6.19 m, compared to 22.37 

m among samples with intersections in the general population. 

      

Figure 15: The three test samples with the highest predicted crash risk indices. All are positive instances. 

From left to right: collision ID 2022010377492 (CRI 1.000), collision ID 2022010404565 (CRI 0.999) and 

collision ID 2020010229063 (CRI 0.999). 

Intersections also appear in many of the most extreme false positive cases. In the most extreme 

false positive case (see below), an intersection appears in fact to be the only feature of note. 

From this, it appears that the model is learning that ways that intersect at an angle near to the 

perpendicular are more dangerous. Another common cause of false positives is extreme way 

density around the central node, which is apparent for example in the negative test sample with 

the second-highest crash risk index (see below). 
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Figure 16: The three negative samples with the highest predicted crash risk indices. From left to right: 

55.69197, -2.86194 (CRI 0.999), 51.51087, -0.08672 (CRI 0.998), 51.51486, -0.12492 (CRI 0.998). 

At the other end of the predicted crash risk spectrum, the test samples with the lowest indices 

share a fascinating similarity. The model appears to have learnt to associate collisions with 

straight, unintersected lines passing through the central node and extending at a very specific 

angle in the roughly northeast direction. Although straight roads are associated with lower crash 

risk (Chen, 2006), there is no obvious reason why this specific angle should be. This is an 

example of how even a sophisticated neural network architecture can misinterpret feature 

importance, especially given limited data. 

     

     

Figure 17:  The ten test samples with the lowest predicted crash risk indices. From left to right: 53.74966, 

-2.79472 (CRI 0.0001584); 50.90361, -1.71187 (CRI 0.0001597); 54.72848, -3.48690 (CRI 0.0001622); 

52.78997, -1.58001 (CRI 0.0001622); 51.98218, 1.24466 (CRI 0.0001622); 51.27020, -1.61454 (CRI 

0.0001636); 53.82936, -2.17033 (CRI 0.0001647); 53.68375, -2.55163 (CRI 0.0001647); 53.49972, -

2.47852 (CRI 0.0001647); 53.38850, -1.52072 (CRI 0.0001647). 
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Chapter 6 

Reflection 

6.1   Summary of work 

In this project a software application was created for generating map-like images representing 

the static road safety factors around specific locations, by integrating various data sources 

including OSM and SRTM. RTA data was collected, analysed, modelled and stored, with the 

precise geographic labels in the data enabling us to use the software application to visualise 

collision locations. An algorithm was created for efficiently selecting random waypoints from 

the Great Britain road network, as represented in OSM data. Traffic count data from local 

authorities was used to bias waypoint selection to higher traffic geographic areas and way types, 

in the former case via the creation of an interpolated grid of traffic data whose polygonal cells 

can be spatially joined to ways through intersection. This process was created to facilitate the 

generation of a set of map-like images whose geographic distribution mirrors real-world driving 

patterns (negative samples), to be contrasted against images generated around collision 

locations (positive samples). Positive and negative samples were generated in large batches 

using performance-optimised batch generation scripts, and then used to train a CNN as a binary 

classifier. To facilitate a more effective analysis of model performance, the image generation 

software application is able to calculate numerical features (e.g., intersection proximity) from 

the geographic data that is being visualised, during image generation. The model was tasked 

with predicting crash risk for an unseen set of feature-labelled samples, with the predicted 

indices stored alongside the features and true labels. Correlation between individual features 

and crash risk indices was analysed, as well as inter-feature correlation, to get information on 

feature importance and covariance. Multiple regression was used to isolate the underlying 

feature importance of covariant features. Finally, individual crash risk prediction cases were 

examined, focusing on extremes and misclassified samples, in a further attempt to gain an 

intuitive understanding of the inner workings of the model. 

6.2   Critical analysis of objective fulfilment 

The objectives of the project were threefold – to create a flexible and extensible software 

application for generating images visualising the static road safety factors around specific 

locations; to train a CNN to predict crash risk using this application; and to analyse the abilities 

of this model. 
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The first objective – to create a flexible and extensible software application for generating 

images visualising the static road safety factors around specific locations – was achieved 

through methodical, iterative engineering, with functional and non-functional requirements 

used to guide the software development process at all stages. With extension and reuse in mind, 

the application was designed to be highly modular. Polymorphic interfaces and inheritance 

allow for the integration of diverse data sources, segmented not only based on content (OSM 

vs SRTM), but also by retrieval method (API vs local database access). A naturalistic ontology 

of custom geographic data structures can be easily manipulated in common gateways thanks to 

the expressive interfaces that they expose. Low-level implementation details are handled by 

leveraging common geospatial libraries in most cases, ensuring efficiency and robustness and 

increasing maintainability. Overall performance can be optimised hugely by following well-

documented steps to store frequently accessed data sources locally. The fulfilment of functional 

requirements was evidenced by rigorous output validation throughout development, as well as 

quality assurance of batch-generated samples. 

The second objective – to train a CNN to predict crash risk using this application – was also 

achieved, with a model trained using sample images generated by our software application. 

This model performed well on standard performance metrics, although as discussed in the 

introduction to the section “Analysing the model”, this is not evidence in itself of real-world 

applicability. 

The third and final objective – to analyse the abilities of this model – was achieved through a 

detailed global and local analysis of the model’s predictions. This analysis revealed that the 

model appears to have successfully learnt from features that have been shown by other studies 

to affect crash risk, including junction density and intersection proximity. The analysis also 

exposed imperfections in the model, with counter-intuitive results observed during feature 

analysis confirmed as aberrant through granular, instance-level prediction analysis, including 

feature sensitivity analysis. Potential biases in the sample data were identified, particularly in 

relation to speed limit, with our negative sampling algorithm implicated. The algorithm in its 

current form, whilst meritorious, is likely too rudimentary to model real-world traffic flow 

sufficiently well for the model to be used in a practical setting. 

6.3   Data limitations 

Before proceeding with calls for further work, it is important to acknowledge the importance 

of data in machine learning, and the consequent significance of the limitations inherent in the 

data sources relevant to static road safety factor analysis. All of the data sources used in this 

project were imperfect in ways that impacted the performance of our crash risk prediction 

model to a variable degree. 
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Although the UK DfT’s RTA datasets are clean, comprehensive and extensive, there are also 

issues. For example, running all collisions from the 2020, 2021 and 2022 DfT RTA datasets 

through the image generation software with the node translocation distance limit of 5 m strictly 

applied results in 16.1% of collisions erroring and being discarded, which is to say that 16.1% 

of collisions are labelled with geographic co-ordinates that do not appear to fall within 5 m of 

an OSM way. This indicates either imprecision in recording or misalignment between data 

sources. Further, vehicle directionality data associated with collisions is not useful in its current 

form: intercardinal categories (e.g., east, southeast) are used that do not appear to map 

obviously to way geometries around collision locations. 

OSM data is crowd-sourced, making it patchy and at times unreliable (Teimoory et al., 2021). 

Way tags indicating speed limit (tag: maxspeed), directionality (tag: oneway) and number of 

lanes (tag: lanes) are unavailable for the majority of ways and the crowd sourcing means that 

even where tags are present, they cannot always be trusted. 

 

Figure 18: Tag availability by way type. Minor way types include pedestrian, track, bus_guideway, 

escape, raceway, road, busway, footway, bridleway, steps, corridor, path, and via_ferrata. Medium way 

types include secondary, secondary_link, tertiary, tertiary_link, unclassified, residential, living_street, 

and service. Major way types include motorway, motorway_link, trunk, trunk_link, primary, and 

primary_link. 

Further, the categorisation of way types is ambiguous, with the definitions of way types such 

as “primary”, “secondary” and “tertiary” open to subjective interpretation. Even more 

pertinently, a variety of persistent geographic features that are likely to affect crash risk fall 

entirely outside the jurisdiction of OSM, owing to perceived importance and practical 

limitations. These might include factors such as actual road width (in metres), presence and 

quality of road markings, or the amount of roadside foliage affecting visibility at junctions. 

Ultimately, there will always be a gap between the complexity of the real world and the data 

used to model it, but continually striving to close this gap is essential for building models that 

are better at solving problems. 

The issue with SRTM data is fidelity. The highest-resolution SRTM dataset has a resolution of 

1 arc-second, which equates to approximately 30 m at the equator. East-west resolution 

increases at higher latitudes, but north-south resolution remains constant. While this resolution 

Category Count % Total Count % Total Count % Total Count % Total

Tag: junction 59397 0.8% 11 0.0% 25696 0.6% 33323 11.8%

Tag: lanes 470899 6.7% 1425 0.1% 263673 6.5% 204135 72.2%

Tag: maxspeed 1153233 16.3% 3663 0.1% 823819 20.2% 262127 92.7%

Tag: oneway 589901 8.4% 7879 0.3% 368252 9.0% 169017 59.7%

All 7062703 100.0% 2464655 100.0% 4077717 100.0% 282913 100.0%

All ways Minor ways Medium ways Major ways
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is suitable in most cases, it does mean that highly localised changes in elevation may not be 

accurately captured. 

Traffic data was a particular problem for this project, considering the importance in binary 

classification of the contrasting effect from negative samples, and the paramountcy of traffic 

data in informing the geographic distribution of the negative sample set used for model training. 

Raw traffic counts are geographically discrete and sparsely distributed, forcing the use of 

techniques such as interpolation to map traffic data to geometries including ways and 

waypoints, introducing inaccuracy. It is noted however that there is a sufficiently large quantity 

of raw traffic counts to suppose that a more sophisticated approach to negative sampling might 

yield a strong representation of traffic flow at any given waypoint. 

6.4   Suggested future work 

From a practical perspective, although the image generation software application built for this 

project is robust and was designed to be flexible enough to support integration with domain-

specific software applications, the crash risk prediction model needs further interrogation and 

possibly re-designing before it can be used in a real-world setting. The software and the model 

are intended to work co-operatively: the images generated by the software do not offer obvious 

value without the model; while the model, as a result of its having been trained on images 

produced by the software, will always remain dependent on the software for the encoding of 

domain-specific data in a way that it can interpret. However, assuming future work leads to a 

more robust model, then a variety of interesting applications become possible, including tools 

for urban planning, road safety auditing, and road maintenance prioritisation. 

As a thought experiment, let’s imagine an engineering consultancy has been commissioned to 

add a new roundabout to an existing road to help manage traffic flow. An employee of this 

consultancy could interact with a frontend layer that sits on top of our image generation 

software, entering polyline data that represents the roundabout through a user interface. The 

image generation software, enhanced to dynamically integrate polyline data with existing OSM 

data in-memory, could render a visualisation of the altered road network including the 

roundabout, input it into the crash risk prediction model, and return the image alongside the 

crash risk index to the frontend layer for display. The employee could iteratively make 

adjustments to the polyline data, observing the effects on crash risk index until a result under a 

certain acceptable threshold of risk is achieved. 

Regarding future work on improving the model, there are numerous potential options that vary 

significantly in complexity. Although data is paramount, it is possible that further 

hyperparameter tuning, for example incorporating zoom as a method of data augmentation, may 
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result in a stronger model (Agustin et al., 2020). Adding channels to the input tensor could help 

us represent geographically layered information in a naturalistic way, allowing us for example 

to leverage OSM’s layer tag to help distinguish between ways that actually intersect at ground 

level and ways that cross at different elevations, e.g., overpasses. Additional tensor channels 

could also be used to incorporate more geographic features, with the natural segregation of 

layers mitigating concerns about visually encoding features in a distinct way. Non-geographic 

data points such as collision severity could also be incorporated during training to enable the 

model to produce a crash risk index that more closely aligns with human notions of risk. 

Missing OSM data could be compensated for using a process of data imputation. The algorithm 

by which random waypoint selection is biased to mimic real-world traffic flow (negative 

sampling) could be refined, perhaps using machine learning techniques, or via improvements 

to data pre-processing, such as adjusting raw traffic count data to handle chronological bias 

(e.g., historic traffic counts could be scaled up or down based on general patterns over time). 

Finally, the use of datasets from non-UK countries could be explored. 

6.5   Concluding remarks 

This project has demonstrated both the potential and challenges of applying computer vision to 

the analysis of static road safety factors. While we have successfully developed and 

operationalised a software application for image generation that should find future use, and 

trained a crash risk model that exhibits promising performance characteristics, the work also 

highlighted limitations in relevant data sources that may inhibit such a model from being 

practically applicable in the near-term. It is hoped that the work done on this project can serve 

as both a theoretical and practical foundation for future work in the domain of road safety 

analysis, with the ultimate aim of helping to reduce the devastating impact RTAs have on human 

lives. 
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